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Introduction: Wnt/β-catenin (cWnt) signaling plays a key role in osteogenesis by promoting the differentiation
and mineralization of osteoblasts, activities altered in human osteoarthritic subchondral osteoblast (OA Ob).
Sclerostin (SOST) has been shown to alter cWnt signaling. Sirtuin 1 (SIRT1) acts as a novel bone regulator and
represses SOST levels inOb. However the role of SIRT1 and SOST inOAOb remains unknown.Herein,we explored
the role played by SIRT1 and SOST on the abnormal mineralization and cWnt signaling in OA Ob.
Methods: Primary human normal and OA Ob were prepared from tibial plateaus. SOST levels were evaluated by
immunohistochemistry, the expression and production of genes by qRT-PCR and WB analysis. Their inhibitions
were performed using siRNA. cWnt signaling was measured by the TOPflash TCF/lef luciferase reporter assay.
Mineralization was determined by alizarin red staining.
Results: SOST levels were significantly increased in OA Ob compared to normal and were linked with elevat-
ed TGF-β1 levels in these cells. SIRT1 expression was significantly reduced in OA Ob compared to normal
yet not modified by TGF-β1. Specific inhibition of SIRT1 increased TGF-β1 and SOST expressions in OA Ob,
while stimulating SIRT1 activity with β-Nicotinamide mononucleotide reduced the expression of TGF-β1
39
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E
Cand SOST, and increased mineralization in OA Ob. Resveratrol also reduced SOST expression in OA Ob.

Reduced cWnt signaling, β-catenin levels, and mineralization in OA Ob were all corrected via reducing
SOST expression.
Conclusion: These data indicate that high level of SOST is responsible, in part, for the reduced cWnt andmin-
eralization of human OA Ob, which in turn is linked with abnormal SIRT1 levels in these pathological cells.
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Clinical and in vitro studies suggest that human subchondral bone
sclerosis and altered bone remodeling, due to abnormal osteoblasts
(Ob), are involved in the progression and/or onset of osteoarthritis
(OA) [1,2]. Modifications of cell markers, differentiation, and minerali-
zation were shown in OA subchondral bone tissue both in vivo [3–5]
and in vitro [6–10]. Compared to normal, OA Ob demonstrate enhanced
cell proliferation [11] and elevatedmarkers of differentiation, such as al-
kaline phosphatase (ALPase), osteocalcin (OC), type 1 collagen [7,9,12],
and growth factors such as transforming growth factor β1 (TGF-β1)
[7,9,13]. An inappropriate osteogenesis of OA bone tissue would explain
these abnormal markers and incomplete mineralization [8,13] as ob-
served in vivo [4] and in vitro [7].
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Sclerostin is a cysteine-knot protein of the DAN family [14] secreted
mostly by osteocytes. Mutations in the SOST gene cause a high bone
mass phenotype in SOST knock-out mice [15] and in humans [16].
SOST is a potent inhibitor of bone growth [17,18] and inhibits β-
catenin signaling via its interaction with the Low Density Lipoprotein
Receptor-related Proteins-5/6 (LRP5/6) receptor [19,20]. Interestingly,
its antagonist role on BMP signaling is also linked with its interaction
with the LRP5/6 receptor [14,21,22]. SOST is a mediator of the response
to mechanical loading in bone [17], suggesting that SOST could be in-
volved in mechanical transduction and indeed mechanical unloading
increases SOST expression [23]. A potential role for SOST in OA is at
present controversial. Indeed, Chan et al. reported that SOST expression
was increased significantly in OA cartilage compared to normal [24].
However, a recent study by Roudier et al. [25] failed to demonstrate
such an increase of SOST in human OA cartilage and bone samples
whereas Jaiprakash et al. indicated that SOST levels were actually de-
creased in human OA samples [26]. Hence, the regulation of SOST ex-
pression in OA bone tissue and cells remains controversial.
rthritis subchondral osteoblasts lead to abnormal sclerostin expression
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Recent reports indicated alterations of Wnt/β-catenin signaling
in OA tissues. Targeted overexpression or a decrease of β-catenin
expression in chondrocytes both lead to alterations of articular carti-
lage similar to those observed in OA [27,28]. In contrast, we recently
showed that a decrease of Wnt/β-catenin signaling in OA osteoblasts
was associated with an increase of DKK2 levels (Wnt/β-catenin in-
hibitor) [8] or reduced R-spondin 2 levels (Wnt/β-catenin activator)
[13].

The pathophysiology of OA is believed to be linked with abnormal
biomechanical alterations of bone tissue. Such alterations would
compromise the overlying articular cartilage in joints leading to car-
tilage fibrillation, fissures and loss. Inasmuch as biomechanical alter-
ations are observed in OA and contribute to its pathophysiology, and
Wnt/β-catenin signaling is altered in OA bone tissue, SOST could then
be playing a role in OA initiation and/or progression since it affects
both pathways.

Sirtuins are widely distributed class III histone deacetylases. Sirtuins
are involved in a number of processes ranging from cell cycle regulation,
apoptosis/proliferation, metabolism, cellular senescence/aging, and
inflammation. There are presently seven mammalian sirtuins family
members, SIRT1 to SIRT7 [28–35], and SIRT1 is the best characterized
in human studies [36–40]. SIRT1 is an important regulator of lifespan
extension during caloric restriction, and affects cell survival, differenti-
ation and proliferation [41,42]. Recent studies indicated a potential
role for SIRT1 inmousemodels of OA [43], and in human chondrocytes,
it affects cartilage-specific gene expression [44]. SIRT1 also plays a key
role on Ob regulation [45–47] and represses SOST expression in bone
[48,49]. However, whereas no reports have described the levels of
SIRT1 or SOST in OA bone tissue, SIRT1 activity was shown to be altered
in humanOAcartilage [44,50]. Therefore, the present study investigated
if an alteration of SIRT1 and SOST expression aswell as of SOST-induced
Wnt/β-catenin signaling could be responsible in OA subchondral Ob for
their abnormal mineralization.

Material and methods

Patients and clinical parameters

Tibial plateaus were obtained from OA patients undergoing knee
replacement surgery and prepared as previously described [6,9,12].
A total of 30 individual patients (69.0 ± 7.8 years, mean ± SD; 10
males/20 females) classified has OA according to the criteria of the
American College of Rheumatology were used [52]. No patients re-
ceived medication that would interfere with bone metabolism. More-
over, thirteen specimens from normal individuals (61.2 ± 18.1 years,
mean ± SD; 9 males/4 females) were obtained from autopsy within
12 h of death. Ethical approval was obtained for the use of all human
material following a signed agreement by the patients undergoing knee
surgery and for the autopsy specimens by relatives, in accordance with
the CHUM ethical committee guidelines.

Preparation of primary subchondral bone cell culture

Isolation of subchondral bone plate and the cell cultures were
prepared as previously described [12]. Osteoblasts from different
patients are never pooled, and individual experiments are per-
formed with cells from individual OA patients or normal individ-
uals. Confluent cells were incubated in the presence or absence of
1,25(OH)2D3 (50 nM) for 48 h for the determination of biomarkers.
Supernatants were collected at the end of the incubation. Cells
were prepared in ALPase buffer for phenotypic determinations, in
TRIzol™ for qRT-PCR experiments, or Laemmli buffer for Western blot
analyses. Protein determination was performed by the bicinchoninic
acid method [53]. SIRT1 activity in OA Ob was stimulated using either
100 μM β-Nicotinamide mononucleotide (NMN, Sigma-Aldrich, Canada)
for 48 h which is converted to nicotinamide adenine dinucleotide
Please cite this article as: Abed É, et al, Low sirtuin 1 levels in human osteoa
which decreases Wnt/β-catenin activity, Bone (2013), http://dx.doi.org/1
E
D
 P

R
O

O
F

in the cytosol, or increasing doses (10 to 500 nM) of resveratrol
(Res) [31].

Phenotypic characterization of human subchondral Ob cell cultures

ALPase activity was determined by substrate hydrolysis using
p-nitrophenylphosphate, and osteocalcin in cell supernatants using
an EIA as previously described [9,12]. Determinations were performed
in duplicate for each individual cell samples prepared fromnormal indi-
viduals and OA patients.

Preparation of Wnt3a conditioned media (Wnt3a-CM)

Conditioned medium (CM) was prepared fromMurine L cell lines
transfected with either an empty vector (Parental) or with Wnt3a
(Wnt3a) obtained from the American Culture Type Collection (Cedarlane
Laboratories, Ontario) as described [12]. CM was added to cells at a 20%
final concentration.

Evaluation of mineralization

Confluent cells were incubated in BGJb media containing 10%
fetal bovin serum (FBS), 50 μg/ml ascorbic acid, 50 μg/ml β-glycero-
phosphate. This media was changed every two days until day 28. Min-
eralization of cell cultures was measured by quantification of alizarin
red staining (ARS) with the procedure of Gregory et al. [54]. Briefly,
cells were fixed in 10% formaldehyde, incubated with 40 mM alizarin
red at pH 4.1, washed and air-dried. Cells are then extracted with 10%
acetic acid for 30 min, scraped from the Petri dishes, heated at 85 °C
for 10 min and then transferred on ice. An aliquot of the cell extract is
incubated with 10% ammonium hydroxide and the color product read
at 550 nm against a standard curve.

Inhibition of TGF-β1 and SOST in OA Ob by siRNA

TGF-β1, SOST and SIRT1 expressions were inhibited in OA Ob by
specifics siRNA (si) as previously described [12]. siTGF-β1, siSOST
and siScrambled (siScr) preparations were obtained from Dharmacon
(Lafayette, CO). siSIRT1 was obtained from Qiagen.

Protein determination by Western blotting

Cell extracts were prepared for WB as previously described
[12]. Rabbit anti-SOST (1:1000, R&D Systems, Minneapolis), rabbit
anti-β-catenin (1:2000, Cell Signaling Technology, Massachusetts),
and rabbit anti-human actin (1:10,000, Sigma-Aldrich) were used as
primary antibodies, whereas goat anti-rabbit IgG (1:10,000, Upstate
Biotechnology, NY) were used as secondary antibodies.

qRT-PCR assays

RT reactions were primed with random hexamers with 1 μg of RNA
followed by PCR amplification with the Rotor-Gene 6® RG-3000A
(Corbett Research, Australia) as described [6,10,11] using 20 pmol
of specific PCR primers: SOST, F: AGAATGATGCCACGGAAATC, R:
TCACGTAGCGGGTGAAGTG; TGF-β1, F: GCGTGCTAATGGTGGAAAC,
R: GCTGAGGTATCGCCAGGAA; SIRT1, F: CCAAGGCCACGGATAGGTCCA,
R: ACAGACACCCCAGCTCCAGTT; Dmp1, F: AGTGCCCAAGATACCACCAG,
R: CATTCCCTCATCGTCCAACT; OC, F: ATGAGAGCCCTCACACTC, R:
GAAAGCCGATGTGGTCAG; GAPDH, F: CAGAACATCATCCCTGCCTCT,
R: GCTTGACAAAGTGGTCGTTGAG, added at a final concentration of
200 nM. The data were processed with the GeneAmp 5700 SDS soft-
ware and given as threshold cycle (Ct). Ct values were converted to
number of target gene molecules and values expressed as the ratio
to GAPDH.
rthritis subchondral osteoblasts lead to abnormal sclerostin expression
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TOPflash dual-luciferase reporter assays

Normal and OA Ob were plated in 24-well plates at a density of
1.5 × 105 cells/well containing 10% FBS in BGJb media and left over-
night. Plasmid mixtures containing 2 μg TOPflash luciferase construct
(Upstate Biotechnology, NY) and 0.05 μg Renilla luciferase driven
by the SV40 promoter (Promega, Wisconsin) were transfected into
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cells overnight using the FuGENE 6 transfection Reagent (Roche) ac-
cording to the manufacturer's protocol. Media was changed and cells
were left to recover from transfection for 6 h prior to incubation for
24 h withWnt3a-CM or Parental-CM. Cells were lyzed and luciferase
activity evaluated using the dual luciferase assay kit (Promega).
Values for TOPflash luciferase activity were normalized with Renilla
activity.
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Immunohistochemistry

Full thickness specimens from the tibial plateaus were processed for
immunohistochemical analysis as described [55]. Briefly, slides were in-
cubated 60 min with a goat blocking serum (Vectastain ABC kit; Vector
Laboratories, USA), blotted and then overlaidwith the primary antibody
against sclerostin (1:50, Santa Cruz) for 18 h at 4 °C in a humidified
chamber. Slides were incubated in the presence of a biotin-conjugated
secondary antibody (goat anti-rabbit, 1:1000) for 45 min at room tem-
perature. This was followed by the addition of the avidin–biotin–
peroxidase complex for 45 min (Vectastain ABC kit), and slides
were counterstained with hematoxylin/eosin. Sections were examined
under a light microscope (Leitz Orthoplan; Leica) and photographed
using a CoolSNAP cf Photometrics camera (Roper Scientific, USA). Posi-
tive cells were counted and analyzed per surface area in 3 or 5 different
fields.

Statistical analysis

Quantitative data are expressed as mean ± SEM. The data were an-
alyzed by an ANOVA followed by appropriate subtest when significance
was reached, and p values b 0.05 were considered statistically signifi-
cant between subgroups.

Results

Phenotypic characterization of human subchondral Ob cell cultures

As we previously reported [12,56,57], ALPase and OC levels were high
in all OA Ob compared to normal: 1195.1 ± 285.2 vs 316.6 ± 85.9 for
ALPase, p b 0.01 and 273.3 ± 73.9 vs 138.7 ± 24.6 for osteocalcin,
p b 0.05.
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SOST expression and production

Sclerostin immunohistochemistry showed an increased cell staining
in OA bone tissue compared to normal (Fig. 1A). As previously reported
[24], OA cartilage also had a higher level of cells staining than normal
(Fig. 1A). Quantitative analysis of total positive cells for SOST showed
a significant increase (p b 0.05) of SOST distribution in OA bone tissue
samples compared to normal (Fig. 1B). The data for bone concurred
with the 4–5-fold increase (p b 0.05) noted for SOST expression in
OA Ob compared to normal (Fig. 1C), and elevated protein levels
(9.22 ± 0.86 fold increase, p b 0.05) (Fig. 1D). SOST expression pro-
gressively increased in post-confluent normal and OA Ob (Fig. 1E).
This SOST expression in OA Ob remained higher at all times points
compared to normal (Fig. 1E). An increased SOST production as a func-
tion of timewas also observed at the protein level (Fig. 1F), and reached
a maximum of 5.85 ± 2.51 folds at 28 days. As SOST is a maker of
osteocytes, and as a relationship between SOST and osteocalcin has
been reported [58], we next evaluated if such a relationshipwas present
in OAbone tissue. A linear relationshipwas observed between SOST and
osteocalcin expression in ex vivo subchondral bone explants of OA
patients (Fig. 1G). Moreover, human recombinant SOST (25 ng/ml) ad-
dition to OA Ob (post confluent cells) for 48 h stimulated osteocalcin
expression about 1.75 folds in these cells (Fig. 1H).

Regulation of SOST expression by TGF-β1 in OA Ob

As we previously reported the elevated TGF-β1 levels in OA Ob
[7,9,13], we next determined if TGF-β1 could be responsible for the in-
crease in SOST production. TGF-β1 stimulated SOST expression in both
OA (Fig. 2A) and normal Ob (Fig. 2B). Conversely, siTGF-β1 in OA Ob
for 48 h, which reduced TGF-β1 expression about 90% as previously re-
ported [8] reduced SOST expression about 5 to 6-folds (Fig. 2C).
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Role of SOST on Wnt/β-catenin signaling and mineralization in OA Ob

Since SOST is an antagonist of Wnt/β-catenin signaling, and because
SOST expression and production is elevated in OAOb, we next looked at
the effect of inhibiting SOST expression on theWnt/β-catenin signaling.
Firstly, data showed that Wnt3a stimulates TOPflash/Renilla activity by
about 9 to 10-folds in normal Ob whereas it was only stimulated 4 to
5-folds in OA Ob (Fig. 3A). This activity was increased significantly by
2 to 3-folds in the presence of siSOST in OA Ob (Fig. 3A), at which
point TOPflash activity in OA Ob was similar to normal Ob. As we previ-
ously reported that free β-catenin levels are reduced in OA Ob com-
pared to normal [8,13], we then evaluated β-catenin levels. siSOST in
OA Ob increased free β-catenin levels under basal condition (Fig. 3B,
Parental). Moreover, whereasWnt3a alone increased β-catenin levels di-
rectly in presence of siScr, siSOST treatments further increased β-catenin
levels about 1.35 ± 0.07 folds (p b 0.05) (Fig. 3B).

We previously showed that the mineralization of OA Ob is reduced
compared to normal Ob [7], and we showed that this could be due to
an increase in TGF-β1 levels [8]. As TGF-β1 increased SOST expression
in both normal and OA Ob (Figs. 2A and B), we next questioned if
SOST could contribute to this abnormal mineralization. Fig. 3C shows
that siSOST for 28 days in OA Ob increased about 2-folds their BMP-2
dependent mineralization.

Role of sirtuin 1 (SIRT1) on TGF-β1 and SOST expression in OA Ob

There is no information on the potential regulation of SOST in OAOb.
However, sirtuin 1 (SIRT1) represses SOST expression in bone [49,50].
As we observed an increase in SOST expression in OA Ob, we therefore
questioned if SIRT1 expression could be altered in OA Ob. As illustrated
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at Fig. 4A, SIRT1 expression was reduced in OA compared to normal Ob.
This reduction persisted in culture as a function of time post-confluence
until day 28 (Fig. 4B). As SIRT1 expression is reduced in OA Ob (Fig. 4A),
while SOST expression is elevated (Fig. 1C) and responds to TGF-β1 reg-
ulation (Figs. 2A and B), we next evaluatedwhether: i) differentiation of
OA Ob towards osteocytes was different in these cells compared to nor-
mal Ob and, ii) if TGF-β1 could also regulate SIRT1 expression in Ob.
Fig. 4C illustrates the expression of Dental matrix protein 1 (Dmp1),
an osteocyte-specific gene [59], as a function of time post-confluence
in both normal and OA Ob. The expression of Dmp1 progressively in-
creased as a function of time post-confluence in both normal and OA
Ob. However, no significant differences were noted between normal
and OA Ob for Dmp1 expression at all times points. Next, as shown in
Fig. 4D, TGF-β1 did not stimulate SIRT1 expression in normal Ob. In ad-
dition, reducing the elevated TGF-β1 expression in OA Ob by siTGF-β1
failed to modify SIRT1 expression in these cells (Fig. 4E). Conversely,
inhibiting SIRT1 expression using a siSIRT1 approach in OA Ob, which
reduced SIRT1 expression of about 50% (Fig. 5A), resulted in an increase
in TGF-β1 expression by OA Ob (Fig. 5B). Under these siSIRT1 conditions,
SOST expression in post-confluent OA Ob was also increased (Fig. 5C).
Conversely, stimulating SIRT1 activity in OA Ob with NMN slightly
inhibited TGF-β1 expression (Fig. 5D) while it completely inhibited the
expression of SOST to undetectable levels in these cells (Fig. 5E). In-
creasing doses of resveratrol, a stimulator of Sirt1 activity [29], also
significantly inhibited SOST expression by OA Ob (Fig. 5F). Last, NMN
also increased the BMP-2-dependent mineralization of OA Ob (Fig. 5G).

Discussion

Wnt signaling is crucial for normal skeletal tissue homeostasis
and function. Subchondral bone tissue is abnormal in OA patients
[3–5], and we previously showed that OA subchondral osteoblasts
have altered functions [7,12,60]. Indeed, we reported that the ab-
normal expression of phenotypic markers and reduced mineraliza-
tion of OA Ob is linked with the stimulation of the Wnt antagonist
DKK2 [8], as well as the inhibition of the Wnt agonist, R-spondin 2
[13]. Herein we show that another Wnt antagonist, SOST, is increased
and involved in abnormal Wnt signaling and altered mineralization in
OA Ob. Moreover, we observed that both the endogenous production
of TGF-β1 and the reduced production/activity of Sirt1 by these cells
are linked with this abnormal production of SOST.

The present study further demonstrates that abnormal regulation of
SOST expression and release by OA Ob is playing a role on the terminal
differentiation of these cells namely their osteocalcin expression andOb
mineralization. First, we observed an interesting linear relationship
between SOST and osteocalcin expression in OAbone tissue extracts, in-
dicating a potential link between the two genes.We further determined
that the presence of recombinant SOST is driving the in vitro expression
of osteocalcin in OA Ob. Second, SOST expression and release are in-
creased in OAOb compared to normal Ob, and this increased expression
is due, in part, to elevated TGF-β1 expression by these cells since TGF-β1
inhibition in OAOb reduced SOST expression, and to an abnormal activ-
ity of Sirt1 in OA Ob. The role of TGF-β1 here is similar to our observa-
tion for DKK2 in OA Ob [8] which is also linked with abnormally high
TGF-β1 levels in OA Ob. Our observations therefore support the role of
TGF-β1 on SOST expression in mature osteoblasts as previously de-
scribed with rat osteoblasts [61]. Chan et al. reported that SOST expres-
sion was increased significantly in OA cartilage compared to normal
[24], a situationwe also observed herein (see Fig. 1A). However, a recent
study by Roudier et al. [25] failed to demonstrate such an increase of
SOST in human OA cartilage and bone. While this group used traumatic
hip patients as control and either hip or knee as OA samples, those of
Chan et al. [24] and ours only used knee samples, which could explain,
in part, this difference. Jaiprakash et al. indicated that SOST levels were
actually decreased in human OA samples [26]. However, there were no
indications where bone samples were actually collected from in both
rthritis subchondral osteoblasts lead to abnormal sclerostin expression
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their normal and OA samples for the preparation of in vitro studies [26],
whereas we only used samples from the subchondral bone plate of tib-
ial plateaus, and we previously demonstrated that osteoblasts prepared
from the subchondral bone plate or the subchondral trabecular bone are
not similar [12,62]. Regardless of these differences, the observation of
an increase at the tissue level (Figs. 1A and B) and in vitro level
(Figs. 1C and D) for bone and osteoblasts samples in our study, and an
increase at the OA cartilage level for the study of Chan et al. [24] and
in our study, suggests that sclerostin may be playing a role in OA, albeit
possibly at a key time point during the course of the disease. Indeed,
episodes of pain and tissue deterioration follow resting periods in OA
progressionwhich could explain some of these differences. This specific
situation will request further investigation to be fully assessed.

As SOST inhibits bone formation [17,21] and regulates bone min-
eralization [63], it was interesting to note it reduced the mineraliza-
tion of OA Ob. Indeed, inhibiting the elevated SOST expression in OA
Ob increased the mineralization of these cells as assessed by alizarin
Please cite this article as: Abed É, et al, Low sirtuin 1 levels in human osteoa
which decreases Wnt/β-catenin activity, Bone (2013), http://dx.doi.org/1
red staining. This would suggest that SOST can directly influence the
mineralization process in in vitro osteoblasts. Moreover, our observa-
tion that inhibiting SOST promoted mineralization whereas addition
of SOST reduced mineralization argues in favor of a unique role of
SOST in bone mineralization. Although bone sclerosis and subchondral
bone plate thickening are consistent clinical findings in OA, we now
know this is not linked with an increase in bone formation per se but
rather this is due to an increase in the formation of the bone type 1 col-
lagen extracellularmatrix with an imbalance inα1 toα2 chains leading
to a reduced mineralization [7,64]. Therefore, SOST could participate in
the abnormal mineralization of this matrix. In addition, recent studies
have shown that SOST is involved in the normal response tomechanical
loading whereby SOST expression goes up upon mechanical unloading
whereas SOST(−/−) mice are resistant to mechanical unloading [65].
Moreover, the relationship we observed between SOST and osteocalcin
could suggest that as OA Ob produce more SOST this contributes to in-
crease their osteocalcin expression, a situation that we tested in vitro.
rthritis subchondral osteoblasts lead to abnormal sclerostin expression
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As osteoblasts become osteocytes upon their embedment into their
type 1 collagen extracellular matrix, and since OA Ob produce more
type 1 collagen [7], this could suggest that OA Ob have a more
osteocyte-like phenotype than normal Ob under similar culture con-
ditions. However, the observation that the expression of Dmp1, a
specific osteocyte-likemarker [59], was similar in post-confluent dif-
ferentiating normal and OA Ob (Fig. 4C), would suggest that the os-
teocyte potential of normal and OA Ob is similar in vitro and that
other factors must key in to explain the alterations we observed for
SOST expression between normal and OA Ob. This observation is
also different from that of Jaiprakash et al. [26] who showed that
Dmp1 expression was increased in OA samples compared to normal.
As our experiments for SOST and Dmp1 expression were conducted
in parallel, it concurs that as Dmp1would indicate osteocyte maturation,
the increased SOST expression in ourOAOb compared tonormalObmust
be related to factors involved in SOST regulation per se, such as abnormal
TGF-β1 levels and reduced Sirt1 activity, not on osteocyte maturation.
U
N
C
O

R
R
E
C
TC

p<0.05
SOST expression

G

CTL NMN

E SOST expression

p<0.001

A
Sirt1 expression

p<0.01

Fig. 5. Hierarchy of SIRT1, TGF-β1, and SOST expression in normal and OA Ob. Role of siSIRT1 o
activation by 100 μMNMN in OAOb on TGF-β1 expression (n = 6). E) SIRT1 activation by 100
resveratrol on SOST expression (n = 4). G) SIRT1 activation by NMN on ARS of OA Ob (repres
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This issue would, however, needmore experiments to be clearly defined.
In contrast, the link we observed between OC and SOST agrees with the
recent hypothesis that as osteoblasts differentiate into osteocytes, they
producemore osteocalcin and SOST, which in turn inhibitsWnt signaling
and promotes further an osteocyte-like phenotype for these cells [58,63].
Our datawould suggest that SOST alone, and not altered Sirt1 activity per
se, directly affects osteocalcin expression in OA Ob.

In the present study, we observed that SOST inhibitedWnt/β-catenin
signaling in OA Ob. Indeed, interfering with SOST expression by siRNA
increased the Wnt3a-dependent Wnt/β-catenin activity of these cells
which almost normalizedWnt/β-catenin signaling in these cells. More-
over, the inhibitory role of SOST on β-catenin signaling was observed
both at the transcriptional level using the dual TOPflash/Renilla reporter
assay and at the protein level using Western blot analysis of β-catenin
levels.

In animal studies, a high fat diet reduces SIRT1 expression and levels
[66] whereas nutrient starvation increases SIRT1 expression [67]. Of
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O
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p<0.001
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TGF - 1 expression
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D TGF - 1 expression

p<0.05

F SOST expression

Resveratrol

Anova p<0.0004

n the expression of A) SIRT1 (n = 4), B) TGF-β1 (n = 8) and, C) SOST (n = 3). D) SIRT1
μMNMN in OAOb on SOST expression (n = 5). F) SIRT1 activation by increasing doses of
entative of n = 4).
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note, obesity is a risk factor for OA patients [68–70] and a high fat diet
enhances the OA burden [71,72]. Diet and nutrient reduction for OA pa-
tients have been considered to be beneficial via body weight reduction
[73]. However, recent studies indicate this could also be linked with
an increase inmuscle strength in OA patients [74], whereas SIRT1 levels
increase in muscle of starved animals [46]. These data suggest that pro-
moting SIRT1 expression in affected joint tissues of OA patients, namely
cartilage, bone and muscle, could potentially restore normal cell physi-
ology in OA tissues. Previous studies have described the potential of
SIRT1 in cartilage biology [45]. Reduced SIRT1 production in the hetero-
zygous SIRT1 knock-out mouse model leads to increased apoptosis in
chondrocytes and increased OA indices in these animals [44]. Moreover,
a reduced SIRT1 activity inmice leads to a decreased collagen type II and
glycosaminoglycan release by chondrocytes isolated from these ani-
mals, whereas it also increases the release of MMPs from these cells,
indices of an OA-like phenotype. Therefore a key role for SIRT1 in OA
pathophysiology is now suggested andmay represent a potential target
to treat OA. However, a direct assessment of the role of SIRT1 in either
muscle and bone tissues has not been reported. In the present study,
we show for the first time that SIRT1 is reduced in OA osteoblasts and
leads to an alteration of osteoblast functions. Indeed, reducing SIRT1
expression increases the expression of TGF-β1 and SOST which can
both alter the phenotype of OA osteoblasts. Last, we also confirmed
that SOST production is increased in human OA cartilage as previously
reported [24] and in human OA subchondral bone tissue.

Although the present data indicated a role for TGF-β1 on SOST
expression and the potential role of Sirt1 on TGF-β1 expression, we
also clearly demonstrated that SIRT1 can directly control SOST expres-
sion. Indeed, SIRT1 has been shown to promote osteoblast differentiation
of mesenchymal stem cells [75] and to repress SOST expression [50].
Hence, reduced SIRT1 expression in OA Ob could be responsible for
their elevated SOST. Interestingly, increasing SIRT1 activity inhibits TGF-
β1 expression in diabetes [47]. We observed a similar situation for OA
Ob upon stimulation of SIRT1 activity using NMN, although the effect of
NMN on TGF-β1 expression was rather small whereas it totally inhibited
SOST expression. Conversely, TGF-β1 could not regulate SIRT1 expression
in normal and OA Ob. These data indicate that TGF-β1 is a downstream
target of SIRT1 in OAOb, a situation that could link reduced SIRT1 activity
with a number of abnormal biomarkers in these cells [7,8,13]. In addition,
we demonstrated that another stimulator of Sirt1 activity, resveratrol,
also reduced SOST expression significantly. However, wemust be careful
to infer that reduced SIRT1 expression alone as observed in OA Ob could
be sufficient to explain our observations for SOST expression. Indeed,
SIRT1 expression does not fully reflect its activity which is controlled by
an elaborate network of regulators such as aging, stress and nutritional
variations, all variables that should be tested in OA.

Conclusion

The present study demonstrated that abnormal SIRT1 and TGF-β1
may be responsible for the increased SOST expression of OA Ob which
contributes to reduce Wnt/β-catenin signaling and mineralization in
these cells.
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